完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
具体的软硬件实现点击http://mcu-ai.com/MCU-AI技术网页_MCU-AI 目前,许多专业人士开始长时间观察鸟类,以保护其物种[4]。然而,大多数监控任务都是由专业人员手动完成的。由于鸟类飞行速度快,难以观察,而且当它们生活在陆地上时,它们很容易被人类活动吓到,无法被相机快速记录下来。因此,使用图像识别来实时识别鸟类既困难又昂贵[5]。更重要的是,许多鸟类被隔离在人迹罕至的高海拔栖息地。由于物理监测的困难,越来越多的专业人员通常通过听觉[6]和记录来识别鸟类。这种被称为生物声学监测的方法可以为濒危鸟类种群的研究提供一种被动且具有成本效益的策略。然而,如果执行手动监测程序,这种监测过程费时费力,无法对生态保护区等区域的鸟类进行实时监测。 相关领域的大多数人倾向于使用物联网设备远程在线监测鸟类种群。由于鸟类保护栖息地大多在野外,在线监测系统很难在良好的网络条件下将鸟类的声音传回服务器进行数据处理、识别和反馈。如果在鸟类保护区进行离线监测,低成本的嵌入式设备无法携带高复杂度的声音特征提取算法和高精度的声音识别算法。因此,针对这一点,本文希望设计一种轻量级的鸟类语音识别算法,该算法不仅可以通过使用简单单一的特征来实现高精度,而且可以使模型足够小,可以在低成本的嵌入式设备中运行。 本文首先收集了大量的鸟类声音数据,构建了264种鸟类的数据集。然后,使用单个梅尔频谱作为声音数据特征。最后,设计了一个轻量级的识别模型来识别鸟的声音特征图,并得到了分类结果。本文的贡献可概括如下: 建立了一个庞大的鸟类数据集:本文构建了一个包含264种鸟类的大型数据集,可以有效地提高模型的泛化能力; 基于改进MobileNet设计的轻量级鸟类识别模型:本文设计了一个轻量级的鸟类声音识别模型,以提高鸟类声音识别的 准确性。提出了多尺度特征融合结构,并在该结构中添加了一个PSA(金字塔分割注意力)模块,以增强网络对空间信息和通道信息的尺度提取的适应能力。设计了Bnecks块,引入了通道注意机制和普通卷积,提高了模型对全局信息的细化能力; 简单的鸟声特征提取过程:通过提取Mel声谱图并将其作为三维特征叠加到识别模型中,可以获得更好的识别结果。 本文使用的鸟叫声数据来自于Kaggle[23]、[24]、[25]的各种鸟类识别比赛以及中国江苏省南京市八卦洲栖霞区农村地区的一些鸟叫声。对收集到的鸟叫声数据分别进行分类和标记。共有264种鸟类。表1显示了数据集中的鸟叫声以及本文中包含的音频片段的数量。由于数据量大,我们只列出了一个鸟叫声的数据信息。
尽管DSC可以减少参数和计算的数量,但DW卷积和PW卷积的顺序组合限制了其特征提取能力。由于特征数据的初始模块总是以低维形式传输,DW卷积无法扩展输出通道。这将导致原始功能的丢失。不仅如此,ReLU激活函数通常在DW卷积之后使用,以引入非线性并加快训练。 对于传统图像来说,由于图像具有丰富的特征,这些缺点可以通过依赖丰富的特征来克服。然而,对于鸟的声谱图特征,低维数据在通过激活函数ReLU后会丢失大量特征,导致低维数据崩溃。因此,如果先进行PW卷积,然后进行DW卷积,可以通过PW卷积将低维特征数据转换为高维数据,从而在特征图中存储大量的空间信息,然后使用PW卷积后的高维特征通过DW卷积提取每个通道的特征信息。通过上述调整,本文提出的鸟声识别模型可以加快推断时间,同时提高准确率。 为了最大限度地提取低维特征,本文重新设计了DSC使用的激活函数,并采用了梯度更平滑的Mish函数,其定义如下: 本文设计的轻量级模型的主干部分参考MobileNetV3 Small[27]。本文对MobileNetV3-Small中存在的问题以及本文中数据集实际数据的情况进行了调整和改进。整个模型体系结构如图5和表2所示。 |
|
|
|
20177 浏览 1 评论
873 浏览 0 评论
硬创大赛项目专访 | 田奕鑫:专注细分领域创新,我们和行业巨头“化敌为友”
82376 浏览 1 评论
硬创大赛项目专访 | 王猛:专研降噪技术,让中国的黑科技产品服务全球用户
23937 浏览 1 评论
8984 浏览 3 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-8-19 15:36 , Processed in 0.420282 second(s), Total 32, Slave 26 queries .
Powered by 电子发烧友网
© 2015 www.ws-dc.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号