完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
|
|
相关推荐
1个回答
|
|
上拉、下拉以及对应上拉电阻和下拉电阻的作用原理
一、什么是上拉和下拉电路 上拉(Pull Up )或下拉(Pull Down)电阻两者统称为拉电阻
单片机往往可以内部挂载一个电阻,通常io口呈现出高阻态,若不上拉或者下拉io口不能识别当前的状态是高电平还是低电平。 二、为什么需要上拉与下拉电路 上拉与下拉电路最基本的作用是:将状态不确定的IO口信号线通过一个电阻将其钳制为一个确定的高电平(上拉)或低电平(下拉),无论它的具体用法如何,这个基本的作用都是相同的,只是在不同应用场合中会对电路中上/下拉电阻的阻值要求有所不同。 对于三态门电路而言,通常我们认为:
上拉电路讲解:
三、上拉与下拉电路的实际作用讲解 1、提高电压准位:
3、N/A pin 防静电、防干扰:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗, 提供泄荷通路,而管脚悬空就比较容易接受外界的电磁干扰。 4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 5、预设空间状态/缺省电位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。在I2C总线等总线上,空闲时的状态是由上下拉电阻获得。 6、提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免受到随机电平而影响电路工作。同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。从而提高芯片输入信号的噪声容限增强抗干扰能力。 一般来说上拉或下拉电阻的作用是增大电流,加强电路的驱动能力 ,比如说51单片机中的p1口 ,p0口必须接上拉电阻才可以作为IO口使用 ,上拉和下拉的区别是一个为拉电流,一个为灌电流 一般来说灌电流比拉电流要大 ,也就是灌电流驱动能力强一些 四、为什么需要加上一个电阻,而不直接连接VDD或者GND? 参考第二节中提供的电路图:
1、上拉电阻实际上是集电极输出的负载电阻。不管是在开关应用和模拟放大,此电阻的选则都不是拍脑袋的。工作在线性范围就不多说了,在这里是讨论的是晶体管是开关应用,所以只谈开关方式。找个TTL器件的资料单独看末级就可以了,内部都有负载电阻根据不同驱动能力和速度要求这个电阻值不同,低功耗的电阻值大,速度快的电阻值小。 2、芯片制造商很难满足应用的需要不可能同种功能芯片做许多种,因此干脆不做这个负载电阻,改由使用者自己自由选择外接,所以就出现OC、OD输出的芯片。由于数字应用时晶体管工作在饱和和截止区,对负载电阻要求不高,电阻值小到只要不小到损坏末级晶体管就可以,大到输出上升时间满足设计要求就可,随便选一个都可以正常工作。 3、一个电路设计是否优秀这些细节也是要考虑的,集电极输出的开关电路不管是开还是关对地始终是通的,晶体管导通时电流从负载电阻经导通的晶体管到地,截止时电流从负载电阻经负载的输入电阻到地,如果负载电阻选择小点功耗就会大,这在电池供电和要求功耗小的系统设计中是要尽量避免的,如果电阻选择大又会带来信号上升沿的延时,因为负载的输入电容在上升沿是通过无源的上拉电阻充电,电阻越大上升时间越长,下降沿是通过有源晶体管放电,时间取决于器件本身。因此设计者在选择上拉电阻值时,要根据系统实际情况在功耗和速度上兼顾。 五、从IC(MOS工艺)的角度,深入讲解输入/输出引脚上/下拉的作用机制 1、 对芯片输入管脚:
在正常工作情况下, OD型管脚内部的NMOS管关闭, 对外部而言其处于高阻状态, 外接上拉电阻使输出位于高电平(无效中断状态,当有中断需求时, OD型管脚内部的NMOS管接通, 因其导通电阻远远小于上拉电阻,使输出位于低电平(有效中断状态)。针对MOS电路上下拉电阻阻值以几十至几百K为宜。 (注: 此回答未涉及TTL工艺的芯片, 也未曾考虑高频PCB设计时需考虑的阻抗匹配, 电磁干扰等效应) 1、芯片引脚上注明的上拉或下拉电阻, 是指设计在芯片引脚内部的一个电阻或等效电阻. 设计这个电阻的目的, 是为了当用户不需要用这个引脚的功能时, 不用外加元件, 就可以置这个引脚到缺省的状态. 而不会使 CMOS 输入端悬空. 使用时要注意如果这个缺省值不是你所要的, 你应该把这个输入端直接连到你需要的状态。 2、这个引脚如果是上拉的话, 可以用于 “线或” 逻辑. 外接漏极开路或集电极开路输出的其他芯片. 组成负逻辑或输入. 如果是下拉的话, 可以组成正逻辑 “线或”, 但外接只能是 CMOS 的高电平漏极开路的芯片输出, 这是因为 CMOS 输出的高, 低电平分别由 PMOS 和 NMOS 的漏极给出电流, 可以作成 P 漏开路或 N 漏开路. 而 TTL 的高电平由源极跟随器输出电流, 不适合 “线或”。 3、TTL 到 CMOS 的驱动或反之, 原则上不建议用上下拉电阻来改变电平, 最好加电平转换电路。 如果两边的电源都是 5 伏, 可以直接连但影响性能和稳定, 尤其是 CMOS 驱动 TTL 时. 两边逻辑电平不同时, 一定要用电平转换. 电源电压 3 伏或以下时, 建议不要用直连更不能用电阻拉电平。 4、芯片外加电阻由应用情况决定, 但是在逻辑电路中用电阻拉电平或改善驱动能力都是不可行的. 需要改善驱动应加驱动电路. 改变电平应加电平转换电路. 包括长线接收都有专门的芯片。 注意事项:本文内容为参考书籍或者其它博主的文章所作的个人总结,不作为任何商业用途,如有冲突请私下联系。 |
|
|
|
只有小组成员才能发言,加入小组>>
3854个成员聚集在这个小组
加入小组3082 浏览 0 评论
航顺(HK)联合电子发烧友推出“近距离体验高性能Cortex-M3,免费申请价值288元评估板
4061 浏览 1 评论
4052 浏览 0 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-8-19 15:33 , Processed in 0.483175 second(s), Total 43, Slave 37 queries .
Powered by 电子发烧友网
© 2015 www.ws-dc.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号