完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
本帖最后由 一只耳朵怪 于 2018-6-7 10:11 编辑
从ti网站上下载的demo程序可以采集A0,A1,A2,A3四个通道,但是我想改成A0一个通道,怎么修改?附上原始程序和修改后的程序(但不能很好工作,采用得到的A0通道数据和输入信号存在非常大的差别) 原始程序 //########################################################################### // // FILE: Example_2833xAdcToDMA.c // // TITLE: DSP2833x ADC To DMA // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // Make sure the CPU clock speed is properly defined in // DSP2833x_Examples.h before compiling this example. // // Connect the signals to be converted to channel A0, A1, A2, and A3. // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // // DESCRIPTION: // // ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs. // Each SOC initiates 4 conversions. // DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort // the data by channel sequentially, i.e. all channel0 data will be together // all channel1 data will be together. // // Code should stop in local_DINTCH1_ISR when complete // // Watch Variables: // DMABuf1 // //########################################################################### // // Original source by: M.P. // // $TI Release: DSP2833x Header Files V1.10 $ // $Release Date: February 15, 2008 $ //########################################################################### #include "DSP2833x_Device.h" // DSP2833x Headerfile Include File #include "DSP2833x_Examples.h" // DSP2833x Examples Include File // ADC start parameters #if (CPU_FRQ_150MHZ) // Default - 150 MHz SYSCLKOUT #define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz #endif #if (CPU_FRQ_100MHZ) #define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz #endif #define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz #define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks #define AVG 1000 // Average sample limit #define ZOFFSET 0x00 // Average Zero offset #define BUF_SIZE 40 // Sample buffer size // Global variable for this example Uint16 j=0; #pragma DATA_SECTION(DMABuf1,"DMARAML4"); volatile Uint16 DMABuf1[40]; volatile Uint16 *DMADest; volatile Uint16 *DMASource; interrupt void local_DINTCH1_ISR(void); void main(void) [ Uint16 i; // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Specific clock setting for this example: EALLOW; SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK EDIS; // Step 2. Initialize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. EALLOW; // Allow access to EALLOW protected registers PieVectTable.DINTCH1= &local_DINTCH1_ISR; EDIS; // Disable access to EALLOW protected registers IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1) EnableInterrupts(); // Step 4. Initialize all the Device Peripherals: // This function is found in DSP2833x_InitPeripherals.c // InitPeripherals(); // Not required for this example InitAdc(); // For this example, init the ADC // Specific ADC setup for this example: AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK; AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS; AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1; AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1; AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0; AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1; AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2; AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3; AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 3; // Set up ADC to perform 4 conversions for every SOC //Step 5. User specific code, enable interrupts: // Initialize DMA DMAInitialize(); // Clear Table for (i=0; i DMABuf1 = 0; ] // Configure DMA Channel DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base DMACH1AddrConfig(DMADest,DMASource); DMACH1BurstConfig(3,1,10); DMACH1TransferConfig(9,1,0); DMACH1WrapConfig(1,0,0,1); DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC, OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE); StartDMACH1(); // Start SEQ1 AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1; for(i=0;i<10;i++)[ for(j=0;j<1000;j++)[] AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine ] //For this example will re-start manually ] // INT7.1 interrupt void local_DINTCH1_ISR(void) // DMA Channel 1 [ // To receive more interrupts from this PIE group, acknowledge this interrupt PieCtrlRegs.PIEACK.all = PIEACK_GROUP7; // Next two lines for debug only to halt the processor here // Remove after inserting ISR Code asm (" ESTOP0"); for(;;); ] 修改后的程序 //########################################################################### // // FILE: Example_2833xAdcToDMA.c // // TITLE: DSP2833x ADC To DMA // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // Make sure the CPU clock speed is properly defined in // DSP2833x_Examples.h before compiling this example. // // Connect the signals to be converted to channel A0, A1, A2, and A3. // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // // DESCRIPTION: // // ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs. // Each SOC initiates 4 conversions. // DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort // the data by channel sequentially, i.e. all channel0 data will be together // all channel1 data will be together. // // Code should stop in local_DINTCH1_ISR when complete // // Watch Variables: // DMABuf1 // //########################################################################### // // Original source by: M.P. // // $TI Release: DSP2833x Header Files V1.10 $ // $Release Date: February 15, 2008 $ //########################################################################### #include "DSP2833x_Device.h" // DSP2833x Headerfile Include File #include "DSP2833x_Examples.h" // DSP2833x Examples Include File // ADC start parameters #if (CPU_FRQ_150MHZ) // Default - 150 MHz SYSCLKOUT #define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz #endif #if (CPU_FRQ_100MHZ) #define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz #endif #define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz #define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks #define AVG 1000 // Average sample limit #define ZOFFSET 0x00 // Average Zero offset #define BUF_SIZE 40 // Sample buffer size // Global variable for this example Uint16 j=0; #pragma DATA_SECTION(DMABuf1,"DMARAML4"); volatile Uint16 DMABuf1[40]; volatile Uint16 *DMADest; volatile Uint16 *DMASource; interrupt void local_DINTCH1_ISR(void); void main(void) [ Uint16 i; // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Specific clock setting for this example: EALLOW; SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK EDIS; // Step 2. Initialize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. EALLOW; // Allow access to EALLOW protected registers PieVectTable.DINTCH1= &local_DINTCH1_ISR; EDIS; // Disable access to EALLOW protected registers IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1) EnableInterrupts(); // Step 4. Initialize all the Device Peripherals: // This function is found in DSP2833x_InitPeripherals.c // InitPeripherals(); // Not required for this example InitAdc(); // For this example, init the ADC // Specific ADC setup for this example: AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK; AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS; AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1; AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1; AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; //AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; //AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; //AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; //AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0; //AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1; //AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2; //AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3; AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0; // Set up ADC to perform 4 conversions for every SOC //Step 5. User specific code, enable interrupts: // Initialize DMA DMAInitialize(); // Clear Table for (i=0; i DMABuf1 = 0; ] // Configure DMA Channel DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base DMACH1AddrConfig(DMADest,DMASource); DMACH1BurstConfig(0,1,10); DMACH1TransferConfig(9,1,0); DMACH1WrapConfig(1,0,0,1); DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC, OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE); StartDMACH1(); // Start SEQ1 AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1; for(i=0;i<10;i++)[ for(j=0;j<1000;j++)[] AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine ] //For this example will re-start manually ] // INT7.1 interrupt void local_DINTCH1_ISR(void) // DMA Channel 1 [ // To receive more interrupts from this PIE group, acknowledge this interrupt PieCtrlRegs.PIEACK.all = PIEACK_GROUP7; // Next two lines for debug only to halt the processor here // Remove after inserting ISR Code asm (" ESTOP0"); for(;;); ] |
|
相关推荐
6个回答
|
|
补充说明:我屏蔽掉两个通道,即只采集A0和A1,并在A0口输入正弦波,发现采样回来的波形存在非常大的偏差,但是如果采用原始程序,波形就非常好,请问这是什么原因啊?
|
|
|
|
tongjingyang 发表于 2018-6-6 02:29 请问楼主用的是同步采样么? 如果同步采样管需要扔掉第一组的数据,具体见F283235的Errata。 如果您认为此问题已被解答,请在“这是否解答您的问题” 后,点击“是”按钮! 谢谢您的合作! |
|
|
|
www033 发表于 2018-6-6 02:38 我设置的是顺序采样,并且AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode , AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0; // Set up ADC to perform 1 conversions for every SOC 这样是不是只对对A0进行采样,结果分别放在AdcRegs.ADCRESULT0中? 然后,我用DMA,配置成 DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base DMACH1AddrConfig(DMADest,DMASource); DMACH1BurstConfig(0,1,10); DMACH1TransferConfig(9,1,0); DMACH1WrapConfig(1,0,0,1); 这样,把结果放在DMABuf1中。 运行结果发现,输入的信号是正弦波(采样频率和输入正弦波频率适当),但得到的波形根本不是正弦波。 |
|
|
|
tongjingyang 发表于 2018-6-6 02:45 这样是不是只对对A0进行采样,结果分别放在AdcRegs.ADCRESULT0中? 是的,SOC0 对应Result0, SOCx 对应 Resultx 您可以先不用DMA,看看ADC采样的数据是否正确? 如果您认为此问题已被解答,请在“这是否解答您的问题” 后,点击“是”按钮! 谢谢您的合作! |
|
|
|
www033 发表于 2018-6-6 03:04 请问一下DMA传输的速度到底是不是每个字4个周期啊,为什么下面这个语句要延时那么久,我把j换成100都不能正常工作? for(i=0;i<10;i++)[ for(j=0;j<1000;j++)[] AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine ] //For this example will re-start manually |
|
|
|
www033 发表于 2018-6-6 03:04 还有个问题,就是下面三条语句为什么这样设置?不是应该每1个burst后,源地址都回到起始地址吗? DMACH1BurstConfig(3,1,10); DMACH1TransferConfig(9,1,0); DMACH1WrapConfig(1,0,0,1);每2个burst后,源地址回到起始地址??? |
|
|
|
只有小组成员才能发言,加入小组>>
865 浏览 0 评论
TMS320F28377D:新做了以377d为芯片的板子,上电后芯片复位引脚出现方波请问如何解决?
2051 浏览 0 评论
TPS55340通电后输入端保险丝烧断,芯片输入和GND之间短路
3790 浏览 4 评论
5145 浏览 0 评论
请问如何用DM368对RGB格式的图片数据进行编码生成JPEG格式图片?
1841 浏览 1 评论
CC3100BOOST使用CC3200lunchXL进行烧录
836浏览 2评论
69浏览 2评论
81浏览 2评论
71浏览 2评论
99浏览 2评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-8-16 14:44 , Processed in 0.730099 second(s), Total 57, Slave 51 queries .
Powered by 电子发烧友网
© 2015 www.ws-dc.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号